L’autocalibrage linéaire d’une caméra à focale variable et ses mouvements critiques

Pierre Gurdjos1, Adrien Bartoli2 and Peter Sturm3

1ENSEEIHT-IRIT, Toulouse, France, 2ISIT-CENTI, Clermont-Ferrand, France, 3INRIA-LJK, Grenoble, France

April 12, 2011
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
L’autocalibrage linéaire d’une caméra à focale variable et ses mouvements critiques

Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

Reminder of the Facts

Self-calibration paradigm

► “Assumption-free” upgrade of a 3D reconstructed scene from projective to Euclidean.

\[
\Omega_\infty / \pi_\infty
\]

projective reconstruct. + Euclidean structure = Euclidean reconstruct.

► The Euclidean structure is given by the absolute conic at infinity \(\Omega_\infty \) on \(\pi_\infty \).
Self-calibration and critical motions

rotation

translation

+ change of scale

\[\Omega_\infty \]

\[\pi_\infty \]
Self-calibration of an “unknown varying focal length” camera

- Camera has *known intrinsics except a time-varying focal length*.

Theoretical Critical Motion Sequences (CMS) in self-calibration

- Those motions which cause *any* of these algorithms to fail.

- Completely known for the “unknown varying focal length” camera [Kahl et al.:00][Sturm:02].
Self-calibration of an “unknown varying focal length” camera

- Camera has *known intrinsics except a time-varying focal length*.

Theoretical Critical Motion Sequences (CMS) in self-calibration

- Those motions which cause *any* of these algorithms to fail.
- Completely known for the “unknown varying focal length” camera [Kahl et al.:00][Sturm:02].
Theoretical CMS vs. artificial CMS

In addition to theoretical CMS, algorithms may have artificial CMS to deal with.
- Caused by constraints being neglected (e.g., on Ω_∞ on π_∞).

In this talk

We investigate CMS in dual linear self-calibration, as popularized in [Pollefeys et al.:99].

😊 Motivation: easy-to-implement self-calibration algorithm.

The issues at stake are:
- How to derive Euclidean descriptions of artificial CMS?
- How to identify and resolve these artificial CMS?
1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
The Dual Self-calibration Problems

Projective geometry of 3D quadrics

- **Quadric** → symmetric matrix $Q^* \in S(\mathbb{R}, 4)$.
- **Virtual** quadric if purely imaginary (while $Q^* \in S(\mathbb{R}, 4)$).
- Proper or **degenerate** quadric ($\det Q^* = 0$)
- **Signature** (p, n) with $p \geq n \geq 0$ and $p + n = \text{rank}$

Dual 3D geometry of Ω_∞ : the Dual Absolute Quadric (DAQ)

In dual 3-space : (degenerate) rank-3 quadric \Rightarrow conic

Ω_∞ on $\pi_\infty \Rightarrow$ virtual rank-3 quadric

\rightarrow rank-3 symmetric matrix $Q^*_\infty \in S(\mathbb{R}, 4)$

referred to as the DAQ.

$\text{signature}(Q^*_\infty) = (3, 0)$ means “Q^*_∞ is a virtual rank-3 quadric”.
L’autocalibrage linéaire d’une caméra à focale variable et ses mouvements critiques

The Dual Self-calibration Problems

Projective geometry of 3D quadrics

- **Quadric** → symmetric matrix $Q^* \in S(\mathbb{R}, 4)$.
- **Virtual** quadric if purely imaginary (while $Q^* \in S(\mathbb{R}, 4)$).
- Proper or **degenerate** quadric ($\det Q^* = 0$)
- **Signature** (p, n) with $p \geq n \geq 0$ and $p + n = \text{rank}$

Dual 3D geometry of Ω_∞ : the Dual Absolute Quadric (DAQ)

In dual 3-space : (degenerate) rank-3 quadric \Rightarrow **conic**

Ω_∞ on $\pi_\infty \Rightarrow$ virtual rank-3 quadric

→ rank-3 symmetric matrix $Q^*_\infty \in S(\mathbb{R}, 4)$

referred to as the DAQ.

$\text{signature}(Q^*_\infty) = (3, 0)$ means “Q^*_∞ is a virtual rank-3 quadric”.

signature(Q^*_∞) = (3, 0) means “Q^*_∞ is a virtual rank-3 quadric”.
The Dual Self-calibration Problems

Projective geometry of 3D quadrics

- **Quadric** → symmetric matrix $Q^* \in S(\mathbb{R}, 4)$.
- **Virtual** quadric if purely imaginary (while $Q^* \in S(\mathbb{R}, 4)$).
- Proper or **degenerate** quadric ($\det Q^* = 0$)
- **Signature** (p, n) with $p \geq n \geq 0$ and $p + n = \text{rank}$

Dual 3D geometry of Ω_∞ : the Dual Absolute Quadric (DAQ)

In dual 3-space : (degenerate) rank-3 quadric \Rightarrow **conic**

Ω_∞ on $\pi_\infty \Rightarrow$ virtual rank-3 quadric

\rightarrow rank-3 symmetric matrix $Q^*_\infty \in S(\mathbb{R}, 4)$

referred to as the DAQ.

$signature(Q^*_\infty) = (3, 0)$ means “Q^*_∞ is a virtual rank-3 quadric”.
Projective geometry of 3D quadrics

- **Quadric** → symmetric matrix $Q^* \in S(\mathbb{R}, 4)$.
- **Virtual** quadric if purely imaginary (while $Q^* \in S(\mathbb{R}, 4)$).
- Proper or **degenerate** quadric ($\det Q^* = 0$)
- **Signature** (p, n) with $p \geq n \geq 0$ and $p + n = \text{rank}$

Dual 3D geometry of Ω_∞ : the Dual Absolute Quadric (DAQ)

In dual 3-space : (degenerate) rank-3 quadric \Rightarrow **conic**

Ω_∞ on $\pi_\infty \Rightarrow$ virtual rank-3 quadric

\rightarrow rank-3 symmetric matrix $Q^*_\infty \in S(\mathbb{R}, 4)$

referred to as the DAQ.

$\text{signature}(Q^*_\infty) = (3, 0)$ means “Q^*_∞ is a virtual rank-3 quadric”.
L’autocalibrage linéaire d’une caméra à focale variable et ses mouvements critiques

The Dual Self-calibration Problems

Statements for the ‘Unknown Varying Focal Length’ Camera

Given a camera P^i, the absolute conic projects to

\[
Q^*_\infty \overset{P^i}{\longrightarrow} P^i Q^*_\infty P^i \mathbf{T} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (f^i)^{-2} \end{pmatrix}.
\]

i.e., to circles, centered at the principal point.

The constrained problem of dual self-calibration

Given a projective motion sequence \(\{P^1, \ldots, P^n\} \), seek a quadric \(X^* \in \mathbb{R}^{4 \times 4} \), such that

\[
X^* \overset{P^i}{\longrightarrow} P^i X^* P^i \mathbf{T} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & □ \end{pmatrix}
\]

subject to constraint,

\[
\text{signature}(X^*) = (3, 0).
\] (1)

The considered unconstrained problem statement: “dual linear self-calibration”

Same problem as above but forget constraint (1).
Given a camera P^i, the absolute conic projects to

$$Q^*_\infty \xrightarrow{P^i} P^i Q^*_\infty P^i \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (f^i)^{-2} \end{pmatrix}.$$

i.e., to circles, centered at the principal point.

The constrained problem of dual self-calibration

Given a projective motion sequence $\{P^1, \ldots, P^n\}$, seek a quadric $X^* \in \mathbb{R}^{4 \times 4}$, such that

$$X^* \xrightarrow{P^i} P^i X^* P^i \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \square \end{pmatrix}$$

subject to constraint,

$$\text{signature}(X^*) = (3, 0). \quad (1)$$

The considered unconstrained problem statement: “dual linear self-calibration”

Same problem as above but forget constraint (1).
The Dual Self-calibration Problems

Statements for the ‘Unknown Varying Focal Length’ Camera

Given a camera \(P^i \), the absolute conic projects to

\[
Q^*_\infty \xrightarrow{P^i} P^i Q^*_\infty P^i \mathsf{T} \sim \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & (f^i)^{-2}
\end{pmatrix},
\]

i.e., to circles, centered at the principal point.

The constrained problem of dual self-calibration

Given a projective motion sequence \(\{P^1, \ldots, P^n\} \), seek a quadric \(X^* \in \mathbb{R}^{4 \times 4} \), such that

\[
X^* \xrightarrow{P^i} P^i X^* P^i \mathsf{T} \sim \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \Box
\end{pmatrix},
\]

subject to constraint,

\[
\text{signature}(X^*) = (3, 0). \quad (1)
\]

The considered unconstrained problem statement: “dual linear self-calibration”

Same problem as above but forget constraint (1).
The Dual Self-calibration Problems

Statements for the ‘Unknown Varying Focal Length’ Camera

False DAQ

- A solution to the self-calibration problem \(x^* \neq Q_{\infty}^* \) is called a false DAQ.
- False DAQs only exist in the presence of critical motions [Sturm:02][Kahl et al.:00].

The unconstrained problem ("dual linear self-calibration") introduces:

- additional false DAQS,
- and, hence, additional (so-called artificial) critical motions.
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
Fundamental condition of criticality

A motion sequence is critical \textit{iff} there exists a quadric in dual 3-space such that:

1. all camera centres are foci of the quadric;
2. all optical axes are focal axes of the quadric.

If you don’t want that a quadric be a false DAQ:

"DON'T MOVE ON ITS FOCI!"
Definition (Confocal Family)

The **confocal family** of the quadric x^* is the linear family of quadrics

$$x_u^* = x_0^* - uQ_\infty^*, \quad u \in \mathbb{R}.$$

Definition (Foci and Focal conics)

Foci of x^*: points of the degenerate quadrics (**focal conics**) of the confocal family of x^*.
Fact (Focal axis)

Focal axis of x^ through a foci = “generating line” of the focal conics of x^*.***
Fact (focus and focal axis of a quadric)

Let X^* refer to either a quadric or a conic.

- **Focus of Q^*** = vertex of a circular cone tangent to X^*.
- **Focal axis through such a focus** = revolution axis of a circular cone tangent to X^*.
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
Symbolic computation:

- For each type of Euclidean quadric,
 - Determine its real foci on focal conics and its real focal axes through them.

General
- Central
- Noncentral

Of Revolution
- Subclass 1
- Subclass 2
- Subclass 3
- Spheres
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
L’autocalibrage linéaire d’une caméra à focale variable et ses mouvements critiques

Critical Motion Sequences (CMS) in Dual Linear Self-calibration

Signature Sequences of critical CMSs

Signature Sequences of critical CMSs

(H) A family \(\{ X^*_v = X^*_1 - vX^*_2 \} \) of false DAQs exists.

Constructing the signature sequence of a CMS

\[\{ X^*_v = \lambda \mid \text{det} X^*_\lambda = 0 \} \quad \rightarrow \quad \text{Signature sequence algorithm} \quad \rightarrow \quad \{ \cdots, (\cdots (p_\lambda, n_\lambda) \cdots), \cdots \} \]

signature of \(X^*_\lambda \)

signature sequence

Example of signature sequence

\[\{ (3, 0), (2, 1), (2, 1) \} \times 2, \times 1, \times 1 \]

\[\Omega_\infty \times 2 \]

\[\times 1, \times 1 \]
1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
A CMS can be resolved iff the signature \((3, 0)\) appears only once in the signature sequence.

All artificial CMS can be resolved.
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
The “Model House” sequence

- **LS problem:** \[
 \min_{\tilde{X}^*} \left\| \tilde{A}\tilde{X}^* \right\|^2
 \quad \left\| \tilde{X}^* \right\| = 1
\]

- **Nonunique solution:** \[\text{dim}(\text{null} A) = 2 \]

- Computed signature sequence:
 \[
 \{ (3, 0), (((1, 0))) \}
 \]

 This means “artificial criticality wrt concentric spheres”

- Solution disambiguated = succeeded!
Outline

1. Flash-back to Self-Calibration of a Camera with “Unknown Varying Focal Length”

2. The Dual Self-calibration Problems

3. Critical Motion Sequences (CMS) in Dual Linear Self-calibration
 - Condition of Camera Motion Criticality
 - Formal Derivation of CMSs
 - Signature Sequences of critical CMSs
 - Identification and Resolution of Artificial CMSs

4. A Simple Test on Real Images

5. Conclusion
Conclusion

A well-founded add-on to the DAQ formalism for self-calibration

Three take-home messages

- **Theory**: Condition of criticality describing both theoretical and artificial CMSs.
 - 1st message: "If you don’t want that a quadric be a false DAQ
 - ... don’t move on its foci!"

- **Algorithm**: Classification of CMSs via a projective descriptor.
 - 2nd message: All CMSs can be uniquely identified.

- **Algorithm**: Resolution by a posteriori enforcing the DAQ signature.
 - 3rd message: All artificial CMSs can be resolved.