Université d'Auvergne Clermont1 | CNRS

.

Nouvelles ISIT

Il y a 2 an 21 semaines

La thèse porte sur la segmentation spatio-temporelle et interactive d'images cardiaques dynamiques. Elle s'inscrit dans le projet ANR 3DSTRAIN du programme"Technologies pour la Santé et l'Autonomie" qui a pour objectif d'estimer de façon complète, dense et sur plusieurs modalités d'imagerie 3D+t (telles que l'IRM, la TEMP et l'échocardiographie) l'indice de déformation du muscle cardiaque : le strain. L'estimation du strain nécessite une étape de segmentation qui doit être la plus précise possible pour fournir une bonne évaluation de cet indice. Nos travaux se sont orientés sur deux axes principaux : (1) le développement d'un modèle de segmentation conforme à la morphologie du muscle cardiaque et (2) la possibilité de corriger interactivement et intuitivement le résultat de la segmentation obtenue grâce à ce modèle.
L'algorithme de segmentation, que nous avons réalisé en suivant ces deux axes, s'appuie sur un modèle de contour actif, appelé B-spline snake, et permet d'isoler simultanément les parois endocardique et épicardique nécessaires à l'évaluation de la déformation myocardique. Pour ce faire, ce modèle couple les deux contours pendant tout le processus de segmentation (en automatique et en interactif).
Le premier avantage de cet algorithme est qu'il permet de converger en combinant des énergies hétérogènes et une force de rappel entre les deux contours. Le problème de minimisation est modélisé par un formalisme de dérivée de forme appliqué à un double contour en 2D, en 2D dynamique, ainsi qu'en 3D.
Le deuxième avantage est que ce modèle de segmentation peut être couplé à l'estimation du mouvement du myocarde soit par un couplage faible en construisant une énergie spécique dépendante des champs de déplacement issu de l'estimation du mouvement ; soit par un couplage fort grâce à un modèle d'assimilation de données : les énergies issues de l'image servent de termes d'observation et le champ de déplacement participe au modèle d'évolution.
Le dernier atout de notre méthode est de permettre la manipulation locale et rapide des contours. Ainsi, les forces utilisées pour faire converger le modèle sont calculées en temps réel lors d'une phase de correction interactive. Elles permettent de donner à l'utilisateur diérents retours qui peuvent être quantiables de manière visuelle ou sensorielle (grâce à un bras à retour d'eort par exemple), dans le but d'améliorer le temps de travail du clinicien et la reproductibilité de la correction. Nous avons évalué les travaux de cette thèse en IRM cardiaque à l'aide de la base de données du challenge MICCAI 2009 sur la segmentation et le calcul d'indices cliniques liés au ventricule gauche du myocarde.

Il y a 2 an 21 semaines

Abstract

The work done in this thesis is related to the project 3DStrain the overall objective of which is to develop a generic framework for the parietal and regional tracking of the left ventricle and to adapt it the 3D + t cardiac imaging modalities used in clinical routine (3D ultrasound, SPECT, cine MRI).
We worked on the parietal motion and myocardial deformation. We made the state-of-the-art on motion estimation approaches in general and on methods applied to imaging modalities in clinical practice to quantify myocardial deformation taking into account their specificities and limitations. We focused on tracking methods that optimize the similarity between the intensities between consecutive images of a sequence to estimate the spatial velocity field. They are based on the assumption of the invariance of image gray level (or optical flow) and regularization terms are used to solve the aperture problem.
We proposed a regularization term well suited to physical and physiological properties of myocardial motion. The advantage of the proposed approach relies on its flexibility to estimate the dense field of myocardial motion on image sequences over the cardiac cycle. Motion is estimated while preserving myocardial wall discontinuities. However, the data similarity term used in our method is based only on the intensity of the image. It properly estimates the displacement field especially in the radial direction as the movement of circumferential twist is hardly visible on cine MRI in short axis view, the data we used for performing the experiments.
To make the estimation more robust, we proposed a dynamic evolution model for the cardiac contraction and relaxation to introduce the temporal constraint of the dynamics of the heart. This model helps to estimate not only the dense field of myocardial displacement, but also other parameters of myocardial contractility (the contraction phase and asymmetry between systole and diastole) in variational data assimilation formalism.
Automatic estimation of deformation and myocardial contractibility (the strain, phase and asymmetry) was validated against the cardiological and radiological expertise through semi-quantitative scores of contraction called Wall Motion Score (WMS) and Wall Thickening Index (WTI). The proposed method provides promising results for both motion estimation results and the diagnosis indices for evaluation of myocardial dyskinesia.
In order to gain in robustness and accuracy, it is necessary to perform the measurement of strain and indices of myocardial contraction precisely inside endocardial and epicardial walls. Therefore, we conducted a collaborative work with Kevin Bianchi, another PhD student on the project 3DStrain and we proposed a method of coupling of myocardial segmentation by deformable models and estimation ofmyocardial motion in a variational data assimilation framework.