Université d'Auvergne Clermont1 | CNRS


Riemannian manifolds, kernels and learning

28/01/2014 10:00
Richard Hartley

I will talk about recent results from a number of people in my group
on Riemannian manifolds in computer vision.  In many Vision problems

Riemannian manifolds come up as a natural model.  Data related to
a problem can be naturally represented as a point on a Riemannian manifold.

This talk will give an intuitive introduction to Riemannian manifolds,

and show how they can be applied in many situations. 

Manifolds of interest include the manifold of Positive Definite matrices and the Grassman Manifolds,
which have a role in object recognition and classification, and the Kendall
shape manifold, which represents the shape of 2D objects.

Of particular interest is the question of when one can define positive-
definite kernels on Riemannian manifolds.  This would allow the 
application of kernel techniques of SVMs, Kernel FDA, dictionary
learning etc directly on the manifold.